3.5.33 \(\int \frac {x}{(8 c-d x^3)^2 \sqrt {c+d x^3}} \, dx\) [433]

3.5.33.1 Optimal result
3.5.33.2 Mathematica [C] (verified)
3.5.33.3 Rubi [A] (verified)
3.5.33.4 Maple [C] (warning: unable to verify)
3.5.33.5 Fricas [C] (verification not implemented)
3.5.33.6 Sympy [F]
3.5.33.7 Maxima [F]
3.5.33.8 Giac [F]
3.5.33.9 Mupad [F(-1)]

3.5.33.1 Optimal result

Integrand size = 25, antiderivative size = 644 \[ \int \frac {x}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {\sqrt {c+d x^3}}{216 c^2 d^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}+\frac {x^2 \sqrt {c+d x^3}}{216 c^2 \left (8 c-d x^3\right )}-\frac {7 \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{432 \sqrt {3} c^{11/6} d^{2/3}}+\frac {7 \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{1296 c^{11/6} d^{2/3}}-\frac {7 \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{1296 c^{11/6} d^{2/3}}-\frac {\sqrt {2-\sqrt {3}} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right )|-7-4 \sqrt {3}\right )}{144\ 3^{3/4} c^{5/3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}+\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right ),-7-4 \sqrt {3}\right )}{108 \sqrt {2} \sqrt [4]{3} c^{5/3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}} \]

output
7/1296*arctanh(1/3*(c^(1/3)+d^(1/3)*x)^2/c^(1/6)/(d*x^3+c)^(1/2))/c^(11/6) 
/d^(2/3)-7/1296*arctanh(1/3*(d*x^3+c)^(1/2)/c^(1/2))/c^(11/6)/d^(2/3)-7/12 
96*arctan(c^(1/6)*(c^(1/3)+d^(1/3)*x)*3^(1/2)/(d*x^3+c)^(1/2))/c^(11/6)/d^ 
(2/3)*3^(1/2)+1/216*x^2*(d*x^3+c)^(1/2)/c^2/(-d*x^3+8*c)+1/216*(d*x^3+c)^( 
1/2)/c^2/d^(2/3)/(d^(1/3)*x+c^(1/3)*(1+3^(1/2)))+1/648*(c^(1/3)+d^(1/3)*x) 
*EllipticF((d^(1/3)*x+c^(1/3)*(1-3^(1/2)))/(d^(1/3)*x+c^(1/3)*(1+3^(1/2))) 
,I*3^(1/2)+2*I)*2^(1/2)*((c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/(d^(1/3)* 
x+c^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/c^(5/3)/d^(2/3)/(d*x^3+c)^(1/2)/(c 
^(1/3)*(c^(1/3)+d^(1/3)*x)/(d^(1/3)*x+c^(1/3)*(1+3^(1/2)))^2)^(1/2)-1/432* 
(c^(1/3)+d^(1/3)*x)*EllipticE((d^(1/3)*x+c^(1/3)*(1-3^(1/2)))/(d^(1/3)*x+c 
^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)-1/2*2^(1/2))*((c^(2/3)-c^( 
1/3)*d^(1/3)*x+d^(2/3)*x^2)/(d^(1/3)*x+c^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(1/ 
4)/c^(5/3)/d^(2/3)/(d*x^3+c)^(1/2)/(c^(1/3)*(c^(1/3)+d^(1/3)*x)/(d^(1/3)*x 
+c^(1/3)*(1+3^(1/2)))^2)^(1/2)
 
3.5.33.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.10 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.25 \[ \int \frac {x}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\frac {80 c x^2 \left (c+d x^3\right )+125 c x^2 \left (8 c-d x^3\right ) \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )+d x^5 \left (-8 c+d x^3\right ) \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{2},1,\frac {8}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{17280 c^3 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \]

input
Integrate[x/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]
 
output
(80*c*x^2*(c + d*x^3) + 125*c*x^2*(8*c - d*x^3)*Sqrt[1 + (d*x^3)/c]*Appell 
F1[2/3, 1/2, 1, 5/3, -((d*x^3)/c), (d*x^3)/(8*c)] + d*x^5*(-8*c + d*x^3)*S 
qrt[1 + (d*x^3)/c]*AppellF1[5/3, 1/2, 1, 8/3, -((d*x^3)/c), (d*x^3)/(8*c)] 
)/(17280*c^3*(8*c - d*x^3)*Sqrt[c + d*x^3])
 
3.5.33.3 Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 641, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {972, 27, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx\)

\(\Big \downarrow \) 972

\(\displaystyle \frac {\int \frac {d x \left (50 c-d x^3\right )}{2 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{216 c^2 d}+\frac {x^2 \sqrt {c+d x^3}}{216 c^2 \left (8 c-d x^3\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {x \left (50 c-d x^3\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{432 c^2}+\frac {x^2 \sqrt {c+d x^3}}{216 c^2 \left (8 c-d x^3\right )}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {\int \left (\frac {42 c x}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}+\frac {x}{\sqrt {d x^3+c}}\right )dx}{432 c^2}+\frac {x^2 \sqrt {c+d x^3}}{216 c^2 \left (8 c-d x^3\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {2 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt {3}\right )}{d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {7 \sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{\sqrt {3} d^{2/3}}+\frac {7 \sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{3 d^{2/3}}-\frac {7 \sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{3 d^{2/3}}+\frac {2 \sqrt {c+d x^3}}{d^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}}{432 c^2}+\frac {x^2 \sqrt {c+d x^3}}{216 c^2 \left (8 c-d x^3\right )}\)

input
Int[x/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]
 
output
(x^2*Sqrt[c + d*x^3])/(216*c^2*(8*c - d*x^3)) + ((2*Sqrt[c + d*x^3])/(d^(2 
/3)*((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)) - (7*c^(1/6)*ArcTan[(Sqrt[3]*c^(1 
/6)*(c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]])/(Sqrt[3]*d^(2/3)) + (7*c^(1/6 
)*ArcTanh[(c^(1/3) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^3])])/(3*d^(2/3) 
) - (7*c^(1/6)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(3*d^(2/3)) - (3^(1/4 
)*Sqrt[2 - Sqrt[3]]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)* 
d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticE[ 
ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3 
)*x)], -7 - 4*Sqrt[3]])/(d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 
+ Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3]) + (2*Sqrt[2]*c^(1/3)*( 
c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 
+ Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*c^(1/3) 
 + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1 
/4)*d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) + 
d^(1/3)*x)^2]*Sqrt[c + d*x^3]))/(432*c^2)
 

3.5.33.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 972
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x 
^n)^(q + 1)/(a*e*n*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*n*(b*c - a*d)*(p + 
 1))   Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*( 
b*c - a*d)*(p + 1) + d*b*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{ 
a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] & 
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.5.33.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 4.32 (sec) , antiderivative size = 883, normalized size of antiderivative = 1.37

method result size
default \(\text {Expression too large to display}\) \(883\)
elliptic \(\text {Expression too large to display}\) \(883\)

input
int(x/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/216*x^2*(d*x^3+c)^(1/2)/c^2/(-d*x^3+8*c)-1/648*I/c^2*3^(1/2)/d*(-c*d^2)^ 
(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d 
/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2* 
I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/ 
2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*((-3/ 
2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*EllipticE(1/3*3^(1/2)*( 
I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^ 
2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3 
^(1/2)/d*(-c*d^2)^(1/3)))^(1/2))+1/d*(-c*d^2)^(1/3)*EllipticF(1/3*3^(1/2)* 
(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d 
^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I* 
3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)))-7/1944*I/c^2/d^3*2^(1/2)*sum(1/_alpha*( 
-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)) 
)/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^( 
1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+( 
-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_a 
lpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alp 
ha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2 
*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),-1/18/d*(2*I* 
(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(...
 
3.5.33.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.57 (sec) , antiderivative size = 2540, normalized size of antiderivative = 3.94 \[ \int \frac {x}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\text {Too large to display} \]

input
integrate(x/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")
 
output
-1/15552*(72*sqrt(d*x^3 + c)*d*x^2 + 72*(d*x^3 - 8*c)*sqrt(d)*weierstrassZ 
eta(0, -4*c/d, weierstrassPInverse(0, -4*c/d, x)) - 7*(c^2*d^2*x^3 - 8*c^3 
*d + sqrt(-3)*(c^2*d^2*x^3 - 8*c^3*d))*(1/(c^11*d^4))^(1/6)*log((d^3*x^9 + 
 318*c*d^2*x^6 + 1200*c^2*d*x^3 + 640*c^3 - 9*(5*c^8*d^5*x^7 + 64*c^9*d^4* 
x^4 + 32*c^10*d^3*x + sqrt(-3)*(5*c^8*d^5*x^7 + 64*c^9*d^4*x^4 + 32*c^10*d 
^3*x))*(1/(c^11*d^4))^(2/3) + 3*sqrt(d*x^3 + c)*(6*(5*c^10*d^5*x^5 + 32*c^ 
11*d^4*x^2 - sqrt(-3)*(5*c^10*d^5*x^5 + 32*c^11*d^4*x^2))*(1/(c^11*d^4))^( 
5/6) - 2*(7*c^6*d^4*x^6 + 152*c^7*d^3*x^3 + 64*c^8*d^2)*sqrt(1/(c^11*d^4)) 
 + (c^2*d^3*x^7 + 80*c^3*d^2*x^4 + 160*c^4*d*x + sqrt(-3)*(c^2*d^3*x^7 + 8 
0*c^3*d^2*x^4 + 160*c^4*d*x))*(1/(c^11*d^4))^(1/6)) - 9*(c^4*d^4*x^8 + 38* 
c^5*d^3*x^5 + 64*c^6*d^2*x^2 - sqrt(-3)*(c^4*d^4*x^8 + 38*c^5*d^3*x^5 + 64 
*c^6*d^2*x^2))*(1/(c^11*d^4))^(1/3))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x 
^3 - 512*c^3)) + 7*(c^2*d^2*x^3 - 8*c^3*d + sqrt(-3)*(c^2*d^2*x^3 - 8*c^3* 
d))*(1/(c^11*d^4))^(1/6)*log((d^3*x^9 + 318*c*d^2*x^6 + 1200*c^2*d*x^3 + 6 
40*c^3 - 9*(5*c^8*d^5*x^7 + 64*c^9*d^4*x^4 + 32*c^10*d^3*x + sqrt(-3)*(5*c 
^8*d^5*x^7 + 64*c^9*d^4*x^4 + 32*c^10*d^3*x))*(1/(c^11*d^4))^(2/3) - 3*sqr 
t(d*x^3 + c)*(6*(5*c^10*d^5*x^5 + 32*c^11*d^4*x^2 - sqrt(-3)*(5*c^10*d^5*x 
^5 + 32*c^11*d^4*x^2))*(1/(c^11*d^4))^(5/6) - 2*(7*c^6*d^4*x^6 + 152*c^7*d 
^3*x^3 + 64*c^8*d^2)*sqrt(1/(c^11*d^4)) + (c^2*d^3*x^7 + 80*c^3*d^2*x^4 + 
160*c^4*d*x + sqrt(-3)*(c^2*d^3*x^7 + 80*c^3*d^2*x^4 + 160*c^4*d*x))*(1...
 
3.5.33.6 Sympy [F]

\[ \int \frac {x}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int \frac {x}{\left (- 8 c + d x^{3}\right )^{2} \sqrt {c + d x^{3}}}\, dx \]

input
integrate(x/(-d*x**3+8*c)**2/(d*x**3+c)**(1/2),x)
 
output
Integral(x/((-8*c + d*x**3)**2*sqrt(c + d*x**3)), x)
 
3.5.33.7 Maxima [F]

\[ \int \frac {x}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int { \frac {x}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}^{2}} \,d x } \]

input
integrate(x/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")
 
output
integrate(x/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)^2), x)
 
3.5.33.8 Giac [F]

\[ \int \frac {x}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int { \frac {x}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )}^{2}} \,d x } \]

input
integrate(x/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="giac")
 
output
integrate(x/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)^2), x)
 
3.5.33.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\left (8 c-d x^3\right )^2 \sqrt {c+d x^3}} \, dx=\int \frac {x}{\sqrt {d\,x^3+c}\,{\left (8\,c-d\,x^3\right )}^2} \,d x \]

input
int(x/((c + d*x^3)^(1/2)*(8*c - d*x^3)^2),x)
 
output
int(x/((c + d*x^3)^(1/2)*(8*c - d*x^3)^2), x)